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ABSTRACT

The stellarator neoclassical transport due to particles trapped in local
helical wells 1is calculated in the low-collisionality regime using a
systematic expansion. The behavior of electron transport is found to be the
same over a wide range of energles but the behavior of' jon transport for low
energy lons is found to be different than that for high energy 1ions.
Furthermore, the electron fluxes do not vary with the ch_ange in the radial
ambipolar electric field nearly as much as do the lon fluxes. Thus, the
particle diffusion is controlled by the electrons. A non-radial ambipolar
electric fleld is induced by ion-drift. This electric field enhances- the
transport by about 15 - 20%. A convenient graphical method that allows one to
determine the magnitude of the radial ambipolar field for machines with
different parameters is presented. Numerical examples show that electron
energy confinement time is comparable to the ilon energy confinement time for
all the different size stellarators studied. Although the neoclassical losses
are large, it is shown that ignition can be achieved in a reasonably sized
stellarator reactor. Finally, from the standpoint of reactor economics, the
confinement scaling law shows that in order to increase nt, it is better to

increase the aspect ratio than the overall dimensions of the reactor.



I. INTRODUCTION
In recent years, there has been renewed interest in stellarator physics
because of encouraging experimental and theoretical result.s.l"2 Experimental

3,

results from the Wendelstein VII-A and Heliotron E stellarators 4 have shown

that the energy confinement time 1is longer than the confinement time of
tokamaks scaled to a comparable size with the same toroidal magnetic field
strength. Theoretical studies using three-dimensional computer codes have
~ indicated that stable stellarator operation 1is possible for plasma B8's between
10 to 20%.5'6 Stellarators have another attractive feature of being able to
operate without a toroidal current. Besides providing steady-state operation,
the current-free nature of the stellarator should avoid major disruptions.
These advantages make the stellarator an attractive candidate for a future
high performance reactor.
On the other hand, stellarators have a major drawback. This arises from
the fact that the external helical windings produce local magnetic wells
\ (henceforth, these local magnetic wells are referred to as helical wells) in
which trapped particles are badly confined. This is a direct consequence of
the lack of toroidal symmetry. The enhanced transport produced by particles
trapped in helical wells can be as much as two orders of magnitude larger than
the (neoclassical) transport produced by part.iclt_as on ba;tana orbits in a
tokamak. The enhanced transport 1is strongest in the high-temperature,
low-collisionality regime. This is the regime in which a trapped ,particle can
bounce many times in a helical well before it detraps by collisions, and it is
also the regime in which reactors are likely to operate. Thus, the nature of
neoclassical transport resulting from nonaxisymmetry plays a critical role in

determining the confinement in stellarator reactors.

various authors have analyzed the transport problem in a nonaxisymmetric

torus. A brief, but by no means complete, review of the previous studies is



given here. Analytical studies carried out by Frieman7 and by Connor and
l-lasti.e8 showed that the diffusion coefficient is inversely proportional to
the collision frequency v, but they did not correctly include the important
effect caused by an ambipolar radial electric field on ion transport. Galeev
et al...9 using a variational principle, and Galeev and Sagdeev.m using an

expansion technique, showed that the ambipolar field reduces the lon diffusion
coefficient, but they did not investigate the ion behavior over a wide energy
range and other effects. Extending Galeev's work, Mynickn studied the
effect on transport of a new non-radial ambipolar electric field. This
electric field is generated by ion drift and has a component tangential to
magnetic surfaces. Boozer and Kuo-Petraviclz evaluated the diffusion
coefficient using a Monte-Carlo technique. In their work, however, the effect
of the self-consistent ambipolar.electric field on transport was not discussed
in detail. The Monte-Carlo technique used in the ATF report’ to estimate
the plasma confinement time did not include the diffusion due to a temperature
gradient. Kovrizhnykh has written an extensive review of all transport

14 and has applied these results to

processes 1in nonaxisymmetric devices
various stellarators.ls He found that in some cases electron transport is
the main loss process in stellarators.

From the above review, ‘it can be seen that the physics of transport in
stellarators is complex and that it is not clear whether all the important
physics have been correctly included. Because of the renewed interest in
stellarator physics and the importance of the neoclassical transport in
stellarators, it is now appropriate to establish a systematic treatment that
can include all the essential physics in stellarator transport. 1In this
paper, the complex stellarator magnetic field is replaced by a simplified
model field that has local magnetic uells; In addition, the use of a

systematic expansion technique allows the transport calculation to be treated



analytically. From this systematic analysis, previocus results are recovered
in a natural way, and new transport phenomena are uncovered. Although the
calculations given here do not yleld a precise confinement time for a real
machine geometry, they do indicate that the inclusion of various new effects
and the diffusion due to a temperature gradient can increase the estimate of
transport by a factor as large as three (e.g., compared to a Monte-Carlo
calculation without the inclusion of a temperature gradient). Therefore, it
is necessary to treat the physics more precisely.

The results from the analysis in this paper show that for most
stellarators, electron flux is relatively insensitive to variations in the
ambipolar electric field. In contrast, the ion flux depends sensitively on
the electric field variations. Thus, the particle transport is governed by
electron diffusion and a good estimate of the total particle transport can be
obtained from electron diffusion without knowing the exact value of the
. ambipolar field. The nonradial amblipolar field caused by lon drift enhances
the transport by about 15 - 20%. Electrons with five to six times the thermal
energy give the dominant contribution to electron transport. The effect of
collisionless detrapping/entrapping on ion transport becomes important only
when lon energy 1s above the energy range (three to four times the thermal
energy) that gives the dominant contribution to ion diffusion. Numerical
examples show that the electron energy confinement time is approximately equal
to that of the 1ions for machines with different sizes and plasma
temperatures. Furthermore, it is shown that the ignition condition can be
achieved if the machine size is reasonably large.

In many ways, the calculations and results of the electron and ion
diffuslion coefficents presented in Secs. IV B and IV C are similar to those of
Galeevy and Sagdeev.m However, our presentation is more detailed and

rigorous than theirs. The ion diffusion coefficient given in this paper 1s



smaller than that in Ref. 10 by a factor of five after the numerical
integration for the proper energy weighting of the Maxwellian distribution
function is carried out correctly.

This paper is organized as follows: The simplified magnetic fleld
geometry 1is described in Sec. II. A heuristic derivation of the transport
coefficients in the low-collisionality regime is presented in Sec. III. The
formal analysis starts in Sec. IV. The expansion and solubility conditions
for the drift-Boltzmann equation are discussed, and a set of reduced equations
for trapped and untrapped particles is obtained in Sec. IV A. The electron
distribution function satisfying the reduced equations 1is obtained in
Sec. IVB by a second expansion. Electron fluxes are alsc given in this
section. The calculation for ion transport is presented in Sec. IV C. The
effect of the non-radial electric field caused by lon drift on transport is
examined in Sec. IVD. In Sec. V a convenient graphical method for
determining the self-consistent radial ambipolar electric fleld is presented,
and the scaling laws for confinement are given. Finally, the results are
summarized. and their significance for stellarator reactors 1is discussed in
Sec. VI. Appendix A presents the bounce-average calculation for the collision
operator. The heuristic derivation of the ilon diffusion coefficient with the
effect of collisionless detrapping and entrapping is presented in Appendix B.
Because of its length, this paper has been written in a concise manner. The
interested readers are referred to Refs. 16 and 17 for detailed derivation of
some of the equations appeared in this paper.

Only neoclassical transport has been addressed in this paper; however,
convective transport may be present in a reactor since reactors should operate
at the highest possible plasma 8 in order to give the maximum output power.
As a consequence, the B may exceed the critical 8 limit by a small amount in

_some regions of the plasma, and this gives rise to pressure-driven convective



cells. Thus, the transport in these regions is governed by both neoclassical
and convective transport. Such convective transport has been studied by Ho

_and Kulsrud in Ref. 18 and by Connor et al. in Ref. 19.

II. MAGNETIC FIELD GEOMETRY
In order to allow the analysis to be carried out analytically, the
magnetic surfaces are assumed to be nested circular tori. The simplified

magnetic field strength, which has features in common with a general

stellarator field, is approximated by
- - - - £
B = Bo 1 ch(r) cos(10 - m) ‘% a cosé] . 1)

Here, % is the multipolarity, m is the number of field periods, £ is
the inverse aspect ratio (a/R;), and ¢, is the depth of the helical
wells caused by the externally imposed helical windings. The toroidal
coordinate system, in terms of minor radius r, poloidal angle 6, and the
toroidal angle ¢ is shown in Fig. 1.

The first and the third term in the above expression represent the
toroidal magnetic field which decreases as the major radius R = R0 + I coso
increases. The toroidal field gradient results in a grad-B drift of electrons
and ions, which is parallel to the major axis. If the toroidal magnetic field
points .1n the direction of increasing ¢, then the electron grad-B drift is
toward the upper region (0 ¢ @ ¢ ¥) of the torus and the ion grad-B drift
is toward the lower region (v ¢ © ¢ 2v) of the torus. The second term
in Eq. (1) describes the magnetic fleld variation due to the helical wells
(see Fig. 2). It is this term that destroys the toroidal symmetry. Particles
trapped in local helical wells have a grad-B drift component that is normal t®

the magnetic surface and this produces the major contribution to diffusion ¥m

a stellarator.



III. HEURISTIC DERIVATION OF COLLISIONAL DIFFUSION COEFFICIENTS
Qualitative physical arguments are used in this section to obtain the
collisional diffusion coefficients in the low- colusional;ty regime. The
electron and ion diffusion coefficients are obtained by using the classical

random-walk formula

D~ a%F @

where A is_ the step-size, v 1s the characteristic frequency of taking a
step in the random-walk process, and F 1is the fraction of particles
participating in the diffusion process.

Rigorous kinetic theory is applied in Sec. IV to calculate the exact

expression far the diffusion coefficients.

A. Electron Diffusion Coefficient
Electrons trapped in local helical wells (henceforth, unless specified,
trapped particles mean trapped in helical wells) drift away from their initial
magnetic surfaces due to the toroidal grad-8 drift. Coulomb collisions with
other particles can convert a trapped electron into an untrapped one. This
untrapped electron can become trapped again, through further collisions, at
any arbitrary poloidal location on the magnetic surface. Thus, electrons

random-walk away from their initial magnetlic surface with step-size

Here, Vg is the grad-B drift velocity, end Veff is the effective
collision frequency, 1.e., the frequency for scattering across the trapping

region in velocity space (see Fig. 3). Note that Ve is equal to

c;;l times the electron collision frequency v, (which is the



reciprocal of the 90° "“deflection t:lme"zo). The characteristic frequency
for electrons to take a step 1s also v eff* Only the trapped electrons,

the fraction of which 1is proportional to (ch)ll 2. participate in this
diffusion process. Thus, by Eq. (2), the diffusion coefficient for electrons

is

A/
D ~—8-¢ )

Because the trapped region In velocity space is small,

2
i

2

mv-/2 = ¢ > mv,/2 for trapped particles. Here ¢ 1is the particle energy.

Hence,

"ol Ty -

Using this approximation and noting that ve-nc'yz, Eq. (3) shows that
De-c" 7l e large ¢ depen;ience indicates that the high energy
electrons give the dominant contribution to diffusion. Note that although
Decn'l, the electron flux is roughly independent of density since the
flux 1is proportional to De(anlar). Also note that the helical field
gradient also results In a grad-B drift. However, the drift component that 1is

normal to a magnetic surface 1s zero after bounce averaging [see Eq. (19)].

B. Ion Diffusion Coefficient
In the absence of an ambipolar electric fileld, the ion diffusion
coefficient D1 is obtained by replacing Ve in Eq. (3) by T This
value of Di. for a deuteron is approximately sixty times larger than De
because the large deuteron to electron mass ratio ylelds a deuteron collision

frequency about sixty times smaller than that of the electrons while /N is



the same size. Thus, a radial electric field Er must arise to reduce the
ion flux to the same level as the electron flux in order to preserve
quasineutrality. This ambipolar electric fleld reduces the step-size for ion
diffusion by changing the ion orbits. The E; X g'drift causes particles to
rotate poloidally. In general, lEr' is strong enough to ensure that all
the trapped ions, except those with low energy (less than thermal energy), can
experience several poloidal rotations before becoming detrapped. (Most
trapped electrons, however, cannot make a full poloidal rotation before they
are detrapped by collisions since Ve » “1') Superposition of the
grad-B drift upon the poloidal drift results in an outward shift of the center
of the trapped-ion drift orbit from the center of the magnetic surface (see

Fig. 4) by a distance

"
Pl

Here,

23
2 ’

QE

is the poloidal rotation frequency of the trapped ions. The shift 4 is the
random-walk step-size for ions.

To zeroth order in L the grad-B drift velocity of trapped lons is
independent of their pitch angle. Consequently, the shift A4 is the same for
all trapped ions, and they do not experience any random-walk until they leave
the trapped region. Therefore, the dominant contribution to ion diffusion
arises from the barely trapped ions. The characteristic time for a barely
trapped ion to detrap through collisions 1s g(ngl). The fraction of

fons in the barely trapped region in velocity space that can become detrapped



10

In the time o' is o(v/e)MZ  Thus, from Eq. (2), the

diffusion coefficient for lons is 16
2
!E vy 1/2 %)

Dy(e) = 5 @) .

The QEBIZ dependence indicates that the effect of the electric
field in changing the 1ion orbits is very efficient in reducing the 1ion
diffusion. In addition, ion mobility in E, reduces the lon flux somewhat
further. (See the expressions for the ion particle and energy fluxes given in
Sec. IV C.)

If the helical well depth S varies with minor radius, then ions can
collisionlessly detrap out of and entrap into helical wells. This effect 1is

discussed in Appendix B.

IV. FORMAL ANALYSIS OF COLLISIONAL TRANSPORT

A. Expansion and the Solubility cﬂnditions for the Drift-Boltzmann Equation

Plasmas in some of the recent experimental stellarators and in
stellarator reactors (see Table I) are in the long-mean-free path regime;
furthermore, the characteristic length and plasma confinement times 1in
transport studies are long compared to particle gyroradil and gyroperiods,
respectively. Therefore, it 1s appropriate to use the drift-Boltzmann
equation21'22 to study collisional diffusion. If the magnetic fleld is time

independent, the drift-Boltzmann equation has the form

F L, as T
32 + Vy + V) - pr + e, 5t 32 = cr,H )

where the guiding-center distribution function of species p is

<>
=f LILX] ’
fp p(c u,r,t)
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the particle energy is

myv
S <
€= 2 +epi

the magnetic moment is

IIIV2

2L
‘|=28 ’

and the position vector r is in (r,8,{) coordinates. Each of the partlal

derivatives in Eq. (5) 1s performed by holding five of the six independent

variables c,u.?.t constant.
-2
Yo
is perpendicular to the line of force:

The drift velocity is the part of the guiding-center velocity that

2
mc v
VD=;5§(2—‘-+v:)%g§+c§—;2u ] )

Inserting the expression for the magnetic field, Eq. (1), into the above
-
v,

equation, the radial and poloidal components of p are

2
(pemv IB)BD e
V., *&_ = (sin@ + sin(Ré-m¢)] + =2 =358
D r mﬂmpR0 (rIRO) Br 90
. (v /88 te, < 28
o oée = '“p"'pRg [cosO + Gmo—) cos(L0-mg)] + Bar ° )

where "'p = epBImpc.

In the low-collisionality 1limit, the collision frequency v and the
effective collision frequency Vops are small compared to the respective
trapped and untrapped particle bounce frequency ", - For untrapped

particles, this limit can be expressed as
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8=

v < w (untrapped) ~ . (8a)

where gR 1s the connection length with q the inverse of the normalized

rotational transform ». The corresponding condition for helically trapped

particles is

()" “v
Voep << @, (trapped) ~ i | (8b)

where L is the distance between two helical mirror points. As an example,

using the parameters for the reference stellarator (see Table I) with m = 6,

veff = 8.5 x 10% sec? (1.4 x 10° sec™) and wy = 106

electrons (ions). Further, in one bounce period, a particle only drifts a

sec ! (104 sec'l) for

tiny distance away from a magnetic surface, i.e.,

\/
Lca . S

For both electrons and ions, vBIa = m2 sec'l for the reference stellarators.

Using the machine parameter given in Table I, it can be shown that
inequalities (8) and (9) are indeed valid.
Inequalities (8) and (9) suggest solving Eq. (5) by expanding f"p in

terms of 1/ vIl :

fp=Fp0+Fp1+Fp2+ . (10)

Equation (5) to lowest order 1is

> >
v“ . VFpo =0 . (11)

This implies that F':,0 is constant mlong a line of force. For the untrapped
particle distribution function fg"‘. €q. (11) implies



F:(',T' = FgéT'(c,u.r.t) ) (12)

Note that FI;OT is independent of 6.
Now consider the trapped particle distribution function fT. If the
rotational transform per helical period is small, a line of force between the

helical mirror points 1s localized in poloidal angle. Thus, F:(', depends

on 6 but not ¢, i.e.,

T. TI
Fpo = Fpo (C.ﬂ.r.eut) » (D)
FU.T. T.
and unlike » F can have different values at different

pO p0O
poloidal locations. Some stellarators, e.g., hellac, do not have small

rotational transforms. Therefore, the line between the mirror points may have
a finite poloidal excursion. However, including this effect in the transport
calculation does not give a result which differs qualitatively from the result
for the case when the line is localized in poloidal angle. Hence, for
simplicity, any line between two mirror points is assumed to be fixed in

poloidal angle in this study.

The expansion in 1IvII breaks down in a thin transition boundary layer
of thickness (vlub)u 2 between the trapped and untrapped reglons in
velocity space. This layer produces discontinuities in velocity-space flux
between trapped and untrapped regions at all poloidal angles since particles
ieavlng the trapped regior; at some 8 can flow along B to a different ©
before becoming essentially untrapped. Hence, only the total flux (i.e., the
flux summed over 6) 1is continuous between trapped and untrapped regions [see
Eq. (21)§J. For a detailed treatment of the distribution function in the

boundary layer using the Wiener-Hopf technique, see Hinton and Rosenbluth21

and Shalng and (:alllen.25
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Equation (5) to first order is

aoF oF
p0 = 32 > 2 % " po _
TR VFpl + vy VFpo te % T C(F ,Fo) . (14)

Solubility conditions on Fpu are obtained differently for untrapped
particles than for the trapped particles. For untrapped particles, the above

equation can be expressed as

B-VngT- =s , ' s)
where
a'_.U.'l'. . u.tT.
= _ 8 po 9. T, ¢ ' po0 - .T.
s = v [ " VFgo ve - — C(Fgo Fl .

Equation (15) is a "™magnetic differential equation'%. Single-valued

ngT' requires a solubility condition on F:")T' obtained from the

integration over the shell volume between two neighboring magnetic surfaces

(constant pressure P surface) p =P and p = P + dP, to vanish, i.e.,

B ‘_Ff.'j_ " T 3 aFuér. T
! dtv—“[ m +vD-VI-J;6 . +eﬁ—%-C(FI;6 WFPl=0 . (6)

shell

Since dr = -(dP/|VP|)dS where dS is an area element on a magnetic

surface, the solubility conditlon on F:;’OT can be expressed as

o ar_.U.:.,T. 2 aFu.T. .
I et et - ch';a WFPl=0 . (17)

where we assumeythe Vo term averagesto zero.
that
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For helically trapped particles, single valuedness of F;i requires

<> >
the v"-VF:i term in Eq. (14) to vanish after applying the operator

tdllvu between two mirror points. Defining a trapped particle

bounce-average operator on any function G such that <G> = (6dllv“)'1 ilelv“,

and applying this operator to Eq. (14) gives the solubility condition on FI&:

a"'ré - T a8 i, T
-—a%- + (V) -F o+ e 5t —B8 _ ccc FoorFg)? - (18)

it

For helical wells localized in poloidal angle, the bounce-averaged drift
velocity <§B> can be obtained in claosed form if the parallel velocity is
approximated by

vy T2 B'Le18) (L-g, coscre-me)]} M2 .

The result 1510

‘30’ = vg(singt +cosgy) + (9+0.)8; (19)

where the expressions for 8 and QE have already been given in Sec. III

(vB has a positive sign for electrons and a negative sign for ions), and

v.be
= 8 h ,2(x) -1
2 2ry K(K)

is the bounce-averaged poloidal ro;ational frequency. K(x) and E(x) are
the elliptical integrals of the first and second kind, and their argument

= {(2,;0%) [e-18y (-1} V2,
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1s essentially v“/JZE;Vi at the local magnetic field minimum. For particles
trapped at different depths in the helical well, the value of «x ranges from

0tol.
To conclude this section, the Jjump for the distributlon function fP

across the boundary layer between the trapped and untrapped regions will now

be established and evaluated.
Let § = v"lv be the pitch-angle variable. Then, because of the
small size of the boundary layer region in velocity space, At is small, and

f. varles rapidly in pitch angle in this region. Thus, to the lowest order

P
in small A%, the dominant contribution to the Fokker-Planck collision

operator in the boundary layer region is the pitch-angle scattering operator,

i.e.,

!l i, o 3f
I Cpy (Fpfp) 45— 3 Q-8 3= (20)

where v = (Avi?lvz is the spitze£ collision frequenc& [see Eq. (50)]. The
condition for trapping 1s IEl(lEcl = (2¢h)1’2. The summation j is taken
over all kinds of fleld particles (e.g., electrons, deuterons, and tritons).
The reason that the coefficient is 1/4 Iinstead of the usual 1/2 is because
only the change in v2 in the pitch-angle direction, rather than the change
in the total vz. is of concern to the trapping and detrapping processes.

Using the approximation (20), the boundary condition for the distribution
function can be obtalned by integrating the drift-Boltzmann equation [Eq. (5)]
with respect to § across the boundary layer end then integrated over a thin

shell between the two adjacent magnetic surfaces in order to eliminate the

v“-Vf term. The result is
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of of
8 _p = 8 _p
] dt = | dtr = . (21)
shetl  “u % [g8 shemr Vi % g
Because f‘P is continuous, we also have
of ef
B -Tu + _E B T. -
I dr Banped-Tecehy) ' = | dv 2 1npel-(E0)) .. (@
shetl i P ST gt T ghem V0 PC T £
The continuity condition is
.T. + T- -
D = 6D | _ 2%

The reason for this condition is becahse, otherwise, there will be no other
term In the drift-Boltzmann equation to balance the collision operator term,
and the discontinuity will be smoothed out by collisions immediately.

B. Electron Transport

The electron step size is small compared to the minor radius. Thus

s
Wers

«1 (24)

For example, using the reference stellarator parameters given in Table I,
vg/avefs = 0¢10~3) for thermal electrons. The radial ambipolar electric
field can be obtained from the approximation (e/T)(3%/9r) = (1/n)(an/dr). Then

9 = 0(10°sec™), and hence

—QL «1l (25)

Veff

Thus, for most cases, poloidal rotation is not important in the study of
. electron transport and thus we do not include it. A similar remark applies to
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QH. Note that inequalities (24) and (25) are also valid in some of the
recent experimental stellarators with parameters given in Table I.

Inequality (24) suggests a perturbation analysis to solve Eqs. (17) and
(18). Expanding Feo in powers of VB/a"eff gives

Fop = fog * fap + fag + -+ (26)

The 2 and 9, terms will be treated as second order in this
expansion. Since collisions are dominant [inequalities (24) and (25)] and
Eqs. (16) and Eq. (18) result in no particle flow out of the magnetic surface
in the lowest order in expansion Eq. (26), feo must be a Maxwelllan by the
Boltzmann H-theorem. This is formally proved by the following argument.

For untrapped electrons, Eq. (16) to lowest order is

5_ .T. = 7
vl Cosfag *F) =0 (27)
where the sdmation J is over electrons and lons. The lons are assumed to
have no mean velocity but otherwise their distribution is arbitrary. Since
fgéT' is a function of only r, ¢, and u, the factor In fg('JT'
can be inserted inside the integral in Eq. (27) so that

| ar@anedTog Cej(fu T ¢ =0 - (28)

shell Vil ]

For trapped electrons, £q. (18) to lowest order is

b 3y (fagifyg) = 0 (29)

nJ

Since fla is independent of &, the factor 1n fzt') can be inserted
inside the line integral and Eq. (29) becomes
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$ % In flo § ceJ(fT'. 0 =0 - (30)

Integrate Eqs. (28) and (30) with respect to ¢ and u over the
respective untrapped and trapped regions in phase space. Then convert the line
integral condition for the trapped particles into a shell integral condition
(see Ref. 17). Adding these two shell integrals for the untrapped and trapped
electrons and then converting the combined Iintegral into an ordinary
velocity-space integral making use of the Jacobian relation

e "ul
= :;2—,% dt/ceed de o | | (1)
e
gives
Jogr v 1n f o [Coglfegsfeg) * I Coslfepefigd] =0 - (32)

The summation 1 is taken over the field lons. Note that féﬂ satisfies

boundary conditions given by Egs. (21) and (23). Also note that, from

Eq. (22), the boundary layer region does not give a contribution to Eq. (32).
Using the Bolfzmann H-theorem and the argument given by Hinton and

Hazeltine?’, Eq. (32) implies that f,, must be Maxwellian (see Ref. 17).

The Maxwellian must be independent of © since fgéT' feM is. Hence

n
ﬁ

feO eM

m 3/2
:+e§) (33)

ne (zr)  exp (- =
e e
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where Ngs Te' and & are functions of r and t. To this order, the
dependence of n e and 're on r is arbitrary; this independence is determined

by annihilation conditions in second order.

For untrapped electrons, the first-order equation is

jdrp—):cj(f” y=0 |, (34)
shell Il §

where ce j(fel) is the linearized collision operator. For trapped
electrons, the first-order equation is

af

el > vg e 2,

In order to solve for f:i, let us write it as the sum of a homogeneous

and an inhomogeneous solution of Eq. (35), l.e.,

f:i = ?el + Fp(B)sine (G6)

with the boundary condition '3;(E c) = 0. Thus, Eq. (35) can be separated

into two equations

oy
<§ceJ(a=)> Vg le (37a)

and
< § Cej (Fel) >=0 . (37b)

Again using the H-theorem, it can be shown fTi and fgiT‘ are the
perturbations of Maxwellians and therefore can be absorbed into the

- lowest~order solution.
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Now consider 'J‘e(E). If the size of the trapping region 1s small
(l.e., IEcl (¢ 1), the dominant contribution to the Fokker-Planck
collision operator in this region is the pitch-angle scattering operator. The
bounce-averaged pitch-angle scattering operator 1s evaluated in Appendix A,

and the result is

(u +tv )

ejel’y 5 _ 3

4 § Cej(GE) > a 3 aEO JD EE; ’ (>8)

where

v

Eg = (-'Eﬂ!—-g!)l’2 _l at the center of a magnetic well.

|3
- 0
K= » 0 ¢l
(zch)llz

and expressions for D(En) and j(Eo) are given in Appendix A.
Substitution of Eq. (38) into the left-hand side of Eq. (37a) ylelds

(“ee+§"ei)

T of
: < =

1.3
S
J azo

The second boundary condition for '.'r"e Just outside the thin boundary layer
must be established before solving for 3;. Using the relation dEoldE = E/E0

as indicated in Appendix A and assuming that the magnetic field is independent

of the poloidal angle, Eq. (21) becomes

fU .T.

BEO

33: af
§ d0 (=2 + =2
aEn %,

= ¢ do

Wl

+

o=te




Note that Fel = fziT' = 0. Thus, the boundary conditions are

33’
’ de 3= =0 ’ 40a
aE0 £g=t, (402)
and, from before,
=0 . | (40b)

g;|£0=zc

Integrating Eq. (39) with respect to En twice, using the above
boundary conditions, and noting that 39; /a'é0 at Eo =0 1is zero
since '?e is even in EO' we abtain

5 . oy,
= - 75— VH(E,,T) S| (41)
e (vee+§"ei) 8" o™ o | _
wvhere
EE
H(Eg,T) = {° g” 5+ JESdE

1

n
Here the primes 1indicate the arguments E; and ED. Note that

Ec = (Zch) is in general a function of Tr. It can be shown

(Ref. 17) that
2
H(EG,1) = ¢, (r)(1-x")

Equation (17) to second order is

af af
g B . eM 3 “_eM, . dS .T.
Fwerve Gae ~®at 3 X =1 opr v, § cej(fu DI (42)



Equation (18) to second order is

af af Iz,
gt 2fem a8 ey
'm[TF' atac*"'asinza —r

+ (vgcosé + T & +T Q) coso.}]

-
-’V“EGJ( 2) .

Equations (42) and (43) together represent an inhomogeneous symmetric integral
equation for er' The solubility conditions on the temporal evolution are
that the inhomogeneous terms be orthogonal to 1 and vy (1.e., the particle
and energy conservation properties of the collision operator). These two

conditions yield constraints on feM and give the temporal evolution of its

parameters "e and Te'
To determine the first solubility condition, we first integrate Eqs. (42)

and (43) with respect to ¢ and u- over the respective untrapped and trapped
regions. Then, the result for the trapped particles is summed over flux tubes

to convert it into a shell integral. Finally, adding these two shell

integrals gives

of of 3F
vBdude eM ¢ eM e
flvm‘ iy, [t - © 3¢ 30 + Vgsin® 3o
i
+(vacose+rQE+rQH)c—:.—s-e-?e]=0 . (44)

It will now be shown that Eq. (44) 1s equivalent to the particle
conservation law. To derive it to the lowest order approximation, we assume

thntfmagnetic surfaces are concentric circles and ¢&at B is constant. Dividing
the



24

Eq. (44) by the total surface area of the torus, which is approximated by
(2:)211!0, and noting that in the §, u coordinates av“/at e(awat)(av“/ac),
the first two terms on the left-hand side of €q. (44) can be written as

ar, af
) wBdude a8 ey
[ ds] ll'2“, (G - e 5t e

= £ (45)

where (ne> is the surface-averaged density. In evaluating the remaining

terms on the left-hand side of Eq. (44), note that the QE and ﬂH terms
vanish after 6 integration. The 8 terms can be combined and expressed as

1 wBdude 2° 2, Ve
——3— | TdeR, & 5 e vg (sin —2 4 cose )
(z)zmo m vy | ar

13 ’
= ax’ j'Rod(Id;vv?e ’

% & .r (46)

which defines re, the electron particle flux per unit area. Substituting
Eqs. (45) and (46) into Eq. (44) gives

a<n >
e

i

i
Tr or

l‘l'e =0 . (47)

This is the particle conservation equation for electrons. To obtain the

second solubility condition for the temporal evolution, Eqs. (42) and (43) are
first multiplied by mevzlz, and then a similar procedure to that employed
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in obtaining the particle conservation equation is used. The result is the

energy conservation equation which has the form

a_3 13 8 _
2 el *rar R -egr=0 - (48)

where (3/2)(neTe> 1s the surface-averaged energy density, and the electron

energy flux per unit area is

IIIV2

L i 3 e
Rodcldv—z va?e .

(2%, :

Note that Eq. (48) 1s obtalned under the assumption that Te = Ti' and

depends on there being no mean parallel ion velodity; otherwise, additional

terms will appear.28

The electron particle and energy fluxes will now be evaluated.

Substituting Eq. (41) into the expression for the particle flux gives

¥/m V. ©
my &V2x prmmeere
- -
fe (21)2R0 £1Im Ro d m:IZ -eo‘ dec see

2

4v £ () af
B c eM
X . (J H(E,,r)dE] — ’
(“ee + i "ei) 0 0 ar c

where the (¢ integration 1is over one helical period and Ec(r) is the

value of t for which Eo = Ec(r). Note that the integral

5D £ (1)

1
J Rd | HdE = 5[ JHdE ’
—x/m 0 2y 0



since

(see Appendix A) and the function H(co,r) is non-zero only between

0 ¢ Ey € E,. It can be shown'~ that

(26,01 R
m

E.(T)
§

-8
-9
Therefore, the electron particle flux per unit area can now be expressed as

fo==-5 P2 57 | acT @GR (49)
e

From this equation, the electron diffusion coefficient at a given energy is
found to be proportional to [vazl(v;e + i vei)][ch(r)]Blz. Thus, the rigorous
calculation verifies the result of the heuristic argument.

To carry out the energy integration in Eq. (49), note that the reciprocal
of the Spitzer 90 "deflection time™ for electrons scattered by background
electrons and lons in the asymptotic limit [v » 1 since (mi/me)]'/2 » 1] is

_ 03 [#(/F) - G(YR) +1]
Vee(Y) + I vg;(v) = Agty == 372 (50)
1
Here,
4,2.2
_ 8w zzanimn
Ay = ) ’
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with the subscript j denoting the quantity for the field particles,

#(vX) is the usual error function, and

e+ ed
T -

X =
" Using this expression, Eq. (49) can be written as

3/2
2 (2¢,(r)] - 3.5,~X

8 ,.cr h x_'"e

r, = -2 (&) a, { | dwx e

e TRy apd %0 B - GO + 1)

an
c(l-—e_gd# 3131

@ o _ =X
§ dxvx e . 51
nedr Tar 2Tarn'lo | L)

The electron energy flux per unit area can be obtained in an entirely

analogous manner and is

3/2
2 [2¢,(1)] ® 4.5 —x
8 T h
Qe='§(egn)——3 nelT { | dx’'x % %_
00 Aole 0 [#(x) - G("X) + 1]
LY em A S
x[near 'Tar"'(x"z)'[ar]}?(];d X e . (52)
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To exhibit the contribution to particle and energy diffusion of electrons with
energy between ¢ and ¢ + dec (these contributions are equal to dl'eld: and
and dﬂeldc. respectively), the Integrands in E€gqs. (51) and (52) are plotted
versus energy. Assuming (1/n)(3n/3r) = (e/T)(3#/3r) = (1L/T)(3T/ar), the
integrands become [x%e~X/(#(vX)-G(vX)+1)1(x+1/2) and [xFe~X/(#(VX)-G(vR)+1)]
x(x+1/2) which are plotted versus x in Filgs. 5(a) and 5(b), respectively. The
figures show that electrons with approximately five and six times the thermal
energy give the dominant contributions to particle and energy diffusion,

respectively.
After integration, Egs. (51) and (52) becomes

3/2 '
2 [2¢ ()] an
fe =~ gi (Eg:;ﬂo) :D"B ng [14.4 (n are
e
edd 3131 19T
“Toar 2T * 275 (53a)
3/2
2 [2¢,.(1)] an
8 cT h e
Q = - = (=) T {71.2 ( —&
e 9 0R0 AD": n ar
edd 31T 1 ar
TTaT2Tap) tABAT ) 30

712
T an aT
3/2 14 14 e 2 31 a4
I, = - 2(2¢ (1)) (16.6 (- —-——_-__)
e h n,, or T, or 27, or
Bﬁnm 14 4 ¥ & ¥
NP —1 10'? em2Zesec”ly (S4a)

Tar



9/2
T an ar
3/2 & _ 1 s e 3 31 %a
Q, = - 2(2¢, (1)) [fl2 (=——2.89 _21 _9
) " B Mo ¥ Ta ¥ 2T, ¥
1 aTll 20 -2 -1
+ 423.4 T—' a_] (10 keVecm “esec ) , (54b)
4 T

where Tn and Rm are in meters, Ba is in units of 10 kG, M is in
10! cn>, and T, and et are in 10 kev. Equations (54a) and (54b)
show that diffusion due to the temperature gradient (the thermal diffusion) is
greater than that due to the combined contribution of density and electric
potential gradients by factors of approximately three and four, respectively.
These equations also show that QeIT is larger than l'e by a factor of
approximately six. In Sec. V, the exact value of # 1s obtained by matching
the electron and the ion particle fluxes. In Ref. 17, Egqs. (53a) and (53b)
are be written in a form displaying Onsager symmetry.

c. _fon Transport

Ion transport is calculated in this section with the assumption that the
helical well depth e is constant across the minor radius. For most
stellarators, however, h increases with the minor radius. Thus, ions may
be collisionlessly detrap out of and entrap Into helical wells. As shown in
Appendix B, for the reference stellarator, this effect 1s significant only for
ijons having energies somewhat more than three times the thermal energy. 1In
the later part of the following section, it 1s shown that the dominant
contribution to lon diffusion, without the effect of collisionless
detrapping/entrapping, comes from lons with energies between three and four
times the thermal energy. Thus, for nonconstant € inclusion of the
effect of collisionless detrapping/entrapping will give an estimate of the ion
flux which is less than the estimate obtalned without this effect. [The
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reason is that the ion diffusion coefficient 1is proportional to v for the

case with the effect of collisionless detrapping and entrapping but

proportional to “112 for the case without this effect.] However, the

estimate obtained in this section provides an upper bound for the ion flux.
Since the 1on collision frequency 1is much lower than that of the

electrons, the Erx-a’ drift takes a trapped ion through several poloidal

rotations during a collisional detrapping time. (Using the reference

stellarator parameters, it can be shown that

\/ \/
8.2 -ga0h , 55

8Verr

and QElui j is large. The "rotational 1limit" mentioned in the rest of
* this paper refers to the case QEIvi j»l. Equation (55) holds for 1lons
with energies less than five times the thermal energy. Except for low energy
lons, i.e., (T, E€q. (55) 1s valid for ions in all the machines with
parameters given in Table I. Thu;:. Egs. (17) and (18) can be solved by

expanding F10 in powers of vEIaQE or vB/anE:

fm = 1"10 + fj“1 + f!.2 * .ee (56)

Since the 1lon collision time is much less than the plasma confinement

time, f is a Maxwellian. This 1s formally shown. in Ref. 16 by Boltzmann

io
H-theorem argument.

For untrapped lons, the first-ordér equation is

B_ Toy _
el Vi § Cyy €y =0 - en
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For trapped lons, it is

T

aof, . af
T. _ il iM
< § C1j (fil) > = nt % * B siné r e - (58)
In order to solve for fIi. again let
£l =F.. + F.(5.0) (59)
i1 1 i '

with #(%.,8) = 0 and Fil a homogeneous solution. Similar to the electron

case, fgiT' and Fil can be taken to be zero. Hence for a sinusoidally-shaped

well, Eq. (58) has the form

Iv
1) 3T, R af
J d i i iM 60

Recall from the heuristic argument that the dominant contribution to ion

diffusion comes from the barely trapped 1ions, i.e., ions with «~1. As «x

approaches unity, Eq. (60) can be simplified. Since D = (:2)'1 [ECx)/K(x) +
(:2-1)] and thus,

_~r 1
limD=-7-7" . (6l1)
(| K(‘P)

Here %p is the 1location of the peak of the first-order distribution

function near the trapped-untrapped boundary in phase space. Also note that

1m {K(x) - % i [16/(1-)]} =0 . (62)
ol
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Thus, near «=1, the derlvative ([3(JD)/3Eg](3F/3kg) is° much smaller

than (JD)(az?ilanz) and £q. (60) can be approximated by

Iy
1j azar1 a7 af
mj_(:p) w2 O 3 *+ vgsin® 5~ |,
0

(63)
[Although Eq. (62) has a logarithmic singularity at x=1, the value 1/K(xP)

is finite since *p is not exactly equal to unity.]

As mentioned in the heuristic argument, the dominant contribution to
diffusion is concentrated in a region of width 0 (vo§78¢) near x~1 in phase
space. Thus, the Eo variable can be transformed into a "boundary-layer"

variable x, which is defined as,

8ot

x=eh y =@ (X0 (64)
or

X€, = (x-1)%¢ c ° (65)
where

Gb = (J—ii?—%)uz <1

p

Expressing Eq. (63) in terms of the varible x gives

7, 3 v .y

-ax—2=§§-+QEsinoa—r- . (66)
Let

67

'3-'1 = A(x)sin® + B(x)cos®é ,
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with boundary conditions on S‘i at x = 0 the same as the boundary conditions
Eqs. (40a) and (40b). Then, it can be shown that in order to satisfy Eq. (66)
and the boundary conditions, functions A(x) and B(x) must have the form:

v of
ACx) = 59 ex/"2 gin x_ __IM , i (68a)
v, o |
3 2
af
B(x) = -B (1 - eX/"2c0s Xy _IM . (68b)
E ,2- 31' €

To study the behavior of Fi.' the function A(x)sin® and B(x)cos@ are

plotted [in units normalized by (vg/Qg)(3fjy/3r)] versus the normalized
pitch angle variable x/Y2¢, in Fig. 6. Since the contribution of terms

involving B(x) integrate to zero in the second order, we shall find that only
the terms involving A(x) contribute to diffusion. Although the B(x) term does
not contribute directly to dif'fu-sion. this term creates an non-radial
ambipolar electric fleld which causes enhancement of electron and 1ion
diffusion. This effect will be discussed in the following section. Figure 6
1ndi;:ates that the function A(x) peaks near x=1. This result confirms the
heuristic argument.

The temporal evolution of the ion density and energy is obtained by going
to second order in expansion (56). Using exactly the same procedure as in

obtaining the electron particle flux, the contribution to the fon flux from

ions with € _<<1 per unit area is

b

*/m lt‘,z-i ® — Et:
I-ilm Rodc m—in I‘T de Ye-ed A ! o dt A(x)

;= Lt
i (20,
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where ct 1s the "transition energy” below which the ordering given by Eq. (55)

/m

breaks down. Note that J = 2f ; (dE/dEo) Rodc = (BxK(x)R)/m as indicated in
~-x/m

Appendix A. Therefore, in the above equation

£.(D) £.(D)

w/m l
Rode I ACOE = I (x)dE,

1 0
=3 € 1. JA(x)dx .

Substituting the expression for A(x) into this expression gives

2 Lv
ij, /2 af
0 e 2R oy
Ebi. JA(x)dx = I; » ‘p K(rp) gt gt 3r c*
Thus, the ion particle flux for c)cT is
: K(: - v2 £v
’1-—1-<—a—>“r' e N el - (69)
7 13/2 - Qt 9 or .
—

The value of :p K(xp) can be evaluated by a iterative procedure. The
value of «x to be used in the first step of the iteration is 0.8, which is

the location of the peak of the A(x)sin® curve as shown in Fig. éa. Then,

from Eq. (62), K(0.8) = 2.2. The second step in the iteration 1is to use
this value of K and Eq. (65) to obtain a new value of x. Note that the
value of A in Eq. (68a) peaks at x = -Y2x/4. If x = -Y2¢/4, cp = 0.05 (taken
at ¢ = 4T, the location of the peak of the curve as shown in Fig. 7), and
Ec =vU.2Z, then Eq. (65) gives « = 0.87. This scheme converges
rapidly. After two more iterations, K converges to a value of 2.5 as :p

approaches 0.88. The correction factor at 'p = 0.88 is then
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(70)

As expected, this factor is less than unity (unity for rectangularly-shaped
well 1s indicated in Ref. 16) since fewer particles can be trapped in a
sinusoidally-shaped well than in a rectangularly-shaped well with length and
depth equal to the length and the maximum depth of the sinusoidal well.
Equation (69) only gives the particle flux for ions with energles greater
than €. Low-energy trapped-ions cannot make a full poloidal rotation
before they are detrapped by colllision. Hence the low-energy ions are
"non-rotational,” 1i.e., QE"'i j«l and then diffusive behavior 1is like
that of the electrons. Consequently, the lon particle flux over the entire

energy range can now be expressed approximately as

T v, af
=8 3/2 &/2% B_Tim
3 = 9y (2ep(1)) 3/2 I devlc-ed Ty ar
ij
my J c
2 % v, 1l/2
- 0.46 82¢ /iR B (— M ) (71a)
3/2 g Yg ar
22 moooe E E €
Similarly, the ion energy flux is
€ 2 2
T m,v v of.
8 3/2 &/2¢ i B iM
Q =-5 @n(e))” " 5720, deve-et ) Ty Tar
m ed ij
i J €
2 2 1/2
- 0.6 &2y [° de/EEE ("'1" y B (1 “) Ml . aw)
22 m13’2 eT QE % o c
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Equations (71a) and (71b) apply to either deuteron or triton diffusion. Note
that for the case of rectangularly-shaped magnetic well, the first-order
trapped-ion distribution function can be solved exactly. This solution
recovers, except the numerical coefficients, the first and second term on
the right-hand side of Eq. (71) in the 1limit of QE/uj_))l and QE"'i“l'

respectively (see Ref. 16).

Equations (712) and (71b) are, of course, only approximate. The
transition energy c is any energy such that for €)ey solutions
given by Eqs. (67) and (68) - the rotational solution - is valid while for
e{Cc7 the nonrotational electron-like solution is valid. For ¢ = ey the full
form of the collision integral must be kept. This has recently been done by
Itoh et al.” and 1t has been found that a harmonic mean of the
nonrotational and rotational results lead to a good approximation for the ion
flux. The harmonic mean is the approximation employed by Kovrizhnykh]'l"l's.
A simpler approximation used here is ta choose the value of 2 at which
the integrands (for «¢)c, and €<c;) agree. Slnce e /T«1 in most

T
applications, under this condition the total flux can be approximated by the

rotational solution.
The integrals In Eq. (71) will now be evaluated. Note that in the
asymptotic limit (“mj_lme 3 1) the reciprocal of the 90° "deflection time™ for

deuterons scattered by fileld particles has the form

§ \vDJ(v) = \voo(v) + vD.r(v) ’

_ %‘3 [ (8¢x) - 6("x)) + (B(Y(mp/mp)x) ~ G('(m/mpIx)) ]
- 0 3/2 ’
X

Here, AD and "D are exactly the same as that for electrons except that

’ me is replaced by the deuterium mass mD. Thus, the deuteron particle flux is
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8 2 (2¢,()2 Xp 7/2_x
Ip = - 97 (sB.R0) np (I afx e
®85Ro Ats 0 L(#(/X))- GX)
J

1 e 3% 137
"[nnar +Tat+t & Z)Tar]

2 Y12 e
.44 ., cT Apto S5/6 -x
+ [(GB R ) /9] ( ) [ dx'x
172 , an
1 as
X (OCRD - A1 o iR x-n D
sf axe (72)
and the deuteron energy flux 1s
8 o 2 (e 2 X o 9/2,-x
-5 Gar Tapz 0 U I XD - A
J
an -
1 _D _e3ad 3,131
*loar *Tact -2 73]
3 172
', o
[(eadio) /%] (AD—) npT IdeX"; X9l42-x
1/2 . an
1 M e as 3 131
x [1 (t(’x-J) - G(";;))] [ng ar +Tar+ (x-2) 7l
T axe™ . 73
0

Here Xy = cTIT. Note that Xr is generally less than unity; thus,
ion fluxes can be well approximated by keeping only the second term (the
rotational limit) on the right-hand side of Egqs. (72) and (73).
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To display the contribution to particle and energy diffusion that is due
to deuterons with energy between ¢ and s+dec, the integrands in the second
term on the right-hand side of Eqs. (72) and (73) are plotted versus energy.
Assuming (1/n)(dn/3r) = (e/T)(3%/3r) = (1/T)(3T/er), the Iintegrands become
%™ (80/%) - 6 )2 (x - 3/2) and 1% * (#¢7R) - 6N Ax - 312),
respectively. These are plotted versus x in Fig. 7. The figure shows that
deuterons with roughly three and a half times the thermal energy give the
dominant contribution to particle diffusion while - those with roughly four
times the thermal energy give the dominant contribution to energy diffusion.
These figures also indicate that at low energies, the ion diffusion is
inward. The reason is that ion mobility in Er reduces the ion flux.

After numerically integrating the second terms of Egqs. (72) and (73) from
zero to infinity, we find the approximate deuteron particle and energy fluxes

(assuming a 50% - 50% D-T plasma) are:

3
2 Aty 172

an
. _ 0.8 cT 1 ¥
r.s-=22(=>) 7/ (—= 1.63 ( —
0% "5 WeRy Ml Co? M IS Gpap
3
2 Aty 172 L g

~ _0.64 .. cT —

+59-’---’--1-9-T-)+17.se%--:—::] ) (74b)

It can be shown that the triton fluxes are nearly equal to the deuteron
fluxes. Thus, deuteron fluxes can be used to estimate the ion particle and

energy confinement times. However, for steady-state reactor operation, the

deuterium and tritium injection ratio may be different from "DI"T and
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proper adjustment needs to be made. From Eq. (74), the jon diffusion
coefficlent 1is 0.25{[cT/(eBR)1%/2}(At,>/9) 2 which 1s smaller than that
given in Ref. 10 by a factor of five. This discrepancy lies in the incorrect
numerical integration over the proper energy weighting of the Maxwelllan
distribution function in Ref. 10.
Substitution of Ajt> into Eqs. (74a) and (74b) gives
r, /2 miira/é a

= m _na
fpE-174 Gezar.) 1/2Rm (1.63 (nla SEL'

T, O
1 ] 0!? en? - secly , (758)

r 32 n'/4%/4 an
m 16 V4 1 Ny,

) 1722 (4.63 = 31

B llz m

4

aT a7 3

L8 31 4 5L r4] 1020 kev » cm™> - sec”l). (75b)
m

4 9Ty 4 T Ta @

where Na is the total ion density.
Finally, Eqs. (75a) and (75b) can be cast to a matrix form that possesses

Onsager symmetry Jjust as in the electron case. Also note that from Eqs. (75a)
and (75b), the ratio of QDIT to I‘D is roughly five and from Sec. IVB,
the ratio of QeIT to l'e is roughly six. Since l‘e = l'i, the 1ion
energy confinement time should be comparable to the electron energy

confinement time. This is confirmed by numerical example in Sec. V
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D. Enhanced Transport Induced by the Nonradial Electric Field Caused by Ion

Drift N

In the q-n-u: totat.ional ].i.nxt:, the first-orde: uapped 1cn disttibut.im
function is essenually the cose dependent utn ova: the bulk ot tha t:apped_ -
region. This term hll a maxdimum at e =0 and a li.n:l.mun at @ = ¥. The reason
for this behavior is that the poloxdal B  x B rotation and the shift of the
drift orbxt.s cause an excess of ims on the outar region and a deficiency of
ions on the inner region of the torus. This first-order distribution function
creates an imbalance of charge that give.s rise to an ambipolar electric fieid
E; vwhich has a © conémene. _This e',L;c'tric field has the effect of enhancing
electron and ion ditfﬁsim. The effect on transport caused by thi.é_ nonradial
electric field was first considered by Hyn:l.-cli." However, our approach and
conclusions given in this section differ considerably from his. This section
presents the calculation for the Ep x _ﬁ drift induced by the nonradial
ambipolar field. ‘Then, the corrected tirstwﬁer electron distribution
function is obtained by including the Ep x § arift. Finally, using the
corrected first-order distribution function, the enhanced particle and energy
fluxes are obtained. ’

To obtain the ambipolar potential .P induced by t.hé pe::t:u.l.'bed~ ion
density, the quasineutrality condition is applied. This condition requires

that
3 1 3
Jaiv (g, + €)= [aVE, . (76)

Here fin = ni(r)exp(-mvzlz - eOP/'r) and f;u - netr)exp(-mvzlz + eop/'r), where

Qp is the potential, necessary for charge neutrality, which produces Ep.
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After expanding the factor exp(-etp/'.l‘) and using the quasineutrality

approximation ng = n;. Eq. (76) becomes

T A | -
¢ " Zen [a&ve - (17)
In the rotational l.i.nit'h'ﬂg/vij » 1, ti‘_ has the form
v_ of,
1 B iM .
£f. = a 3z le cos® .
Thus,
. v_ of
¢ --za-cosﬂf dava—.; S:H .
P trapped E €
The component of the 'Ep x B arift normal to a magnetic surface is
. L. cNP
Vexs * ®r © T TE36
: v, of
- sind. [ alv 2 ai" . . (18)
trapped E €

Note that QE = (c/rB)(3%/3r). The ambipolar radial electric field -38/ex
can be approximated by C(T/e)(1/n)(3n/3r) where the coefficient C, of order
unity, is determined in Sec. V by requiring the electron and ion particle

fluxes to be ambipolar. Thus, BEg. (78) can be expressed as

1/2
YT et .3 cE (26, (5)) sind
I-:P!B r 4 eBORO C(1/n)(3n/3r)
P W TR CI I 3 179)
i or ar T Ir y
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which is of O(cM2c /eBR) « For ¢, = 0.1, v, /v, ~0.5atc=T. The
effect of this EP x B drift on electran tzansporpt will be discussed naow, and
the effect on i tza.nsport will be discussed later in this section.

Note that the tadial component of ¥ E xB and ¥, are p:oport:l.cna.l to sin@,
and that their directions are parallel. for electrons. Therefore, the nodi.fied |

electron diffusion coefficient is
1,67 .2 .€ 2 .
De(e) ~ (ﬁ) ["i." + Jz:hl - . ] (80)

For exampie, if €y, = 0.1, then the diffusion cosfficient is enhanced by about
50% for thermal electrons. However, as we have found in Sec., IV B, electron
particle and energy diffusion is dominated by particles having five or six
times the thermal energy. Thus, vhen the proper energy uex.ghi.ng is
considered, the electron particle anq energy fluxes are only enhanced by about
20 and 158, respectively., This is shown in the following calculation.

Since tEP!B and ¥, are the same order of magnitude, the first-order
electron distribution, given by Eq. (4(), must be modified. Including the tp

x 8 drift into By.(31) yields

. c .. p eM .
= [vgsind + 7 ( :30” o |, (®1)

Using the same procedure thit was employed in solving Bg. (3%), B3y. (81) gives

4 c 3_.2_ afeu
F = = —— {v_sin® + B {~ rae)lﬂ(io,r) T . (82)

e (vee + Evei) B
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Following By. (46), it can be shown that the modified electron particle flux

per unit area is

j de[ ad:]dv[v:ine+ "ﬁ”
(2} "0 -w/m

(2e, (r1)%/2 - 3.5 -x
i i et RO
00 ALt 0 [(¢¢/x) - c(v)) + 1]

T =

3 Y2, 1 B o230 L 13T 2
( +¥a )l

x [x " 4T/ ) Gn A oy * Tz

3 Iz:h(:) 1 ani 20

e L
"Ecn/n‘)(an‘/az) (q or TIr  Taor

e 31 89T
x (3.8 (_—-?3t--2-?3?)+1‘ 4——]} . (83).
The second term on the right-hand side in the last equation is the enhancement

for the electron particle flux.
Similarly, the modified energy flux can be obtained and has the form
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3/2
0 = _ 8 (c'r ,z (Zch(r)) i
e ox eB R, AD!.3 e
1 M e30 31 a7 1 3T o
x {(71.2 (n—aT--i—r-i--i??r—) +4.1"3.4?3?] .-
3' IZC (t) - (_1_ ani +g__a_0_+l§;_) .1____ - <
-2 C('I/n )(an /3:) n 3r TOr T or R =S .
x (14.4 i_'__an;'--'é_'ii; 3-‘-3?-;.4-—7.1. .z--‘--a-é;}' oL o 64) o
" m,dr  Tar 2Tar e rar T o
where the (3/2)( lz:h/cﬁ/n)(an/ar)]- ternm i.s the enhancenent of the

electron energy flux. The term i.nvolvmg (VBP’B) has not been included in
Egs. (83) and (54) because this term would be smaller than any other term in
these two equati.ons. B;uaf.‘l.ons (83) and (04) i.ndicai:e that the enhanced
electron particle t:anspott due t.o the electric field caused by ion drift is

\fachr 15
roll--a about 15%

for energy transport. Equwations (83) ami (84) can be cast into a matrix

about 20% of the ordinary electron particle transport, the corres

-

that possesses (nsager symmetry.

The effect of the EP x B drift on fon transport will now be discussed.

Since the EP x B and grad-B drifts are in opposite direction for ions, the
]

modified diffusion coefficient for ions is

- LI 2 2 £ ; y1/2 ,
D, (€) o = - /75)? E . (85)

Hence, it may be thought that the nonradial electric field reduces ion
transport. However, this is not the case. In fact, the ion puﬁcle
transport must be increased by the same amount as the _enhanced electron loss
in order to preserve charge neutrality. Since ion diffusion is very sensitive

to the radial electric field, while electron diffusion is not (see Sec. v), &
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slight decrease in radial electric field increases the ion transport to

restore the charge imbalance. The on heal less should be increased by @

correspendivy faclor cince bLith ion partice. and energy losses are proportional to _Q-Zh;

The electron drift also creatss a nonradial ambipolar electric field.

However, the 29 x B drift caused by this nonradial electric tieid is smaller

7]
o et R

than the grad-B drift wvelocity by a factor of Vg/av ege "_'n\e-;etore. thc

corrections to the first-order electran and ion distributian funétions m
negligible, and this nonradial electric field has no i.nportant effect an
random~walk type diffusion. .

Throuahout the m’t Oi- tkis rare"l we will ia"-"ﬁ tl‘e "‘Jd*cati.u IN.
trancport produced by these nonradial f.ielis. }

V. RADIAL AMBIPOLAR ELECTRIC FIELD AND SCALING LAWS FOR CONFINEMENT

The expressions for the electron and ion particle fluxes given in Secs.
IVB and IVC depend on the n;gnitude of the ambipolar electtost:al:i:c potential
¢(r). The first part of this section discusses the behavior of the electron
and ion fluxes as the magnitude of the radial electric field E. = -34(r)/3r
varies, The second part of this section presents a convenient method of
determining the self-consistent radial ambipolar potential and-discusses- ﬁie

scaling laws for confinement.

In this section, it is assumed for simplicity that the radial electric
[}

field is related to the density gradient by a constant C, i.e.,. -
e 3¢ 1 on '
T "~"%z3c (86)

{in Fig. 8 /

Using this condition, the electron and ion fluxes are plotted versus C'for two
different central densities ém=s¥igm=8 for the reference stellarator at

rsa/2. Note that the electron flux is independent of central density (see

Sec. III) .

In this plot, bhoth the density and temperature profiles are assumed to be

,..
whf

I X ]
ECTAFLLYY
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parabolic, {.e., n(r) = ngl1 - (r/a)zl and ™(r) = Tol1 - (r/'a)zl. (The reason
for choosing parabolic profiles is given later in this section.)

Figure 8 shows that the ambipolar condition ', = F; is satisfied at C =

e
0.7 for a peak density no = 2 l‘lO" 3. As ng decreases to 1014_ cm 3 the
ambipolar condition :Ls sat:i.sﬂ.ed at three differmt vu.lues of C. This
behavior of multiple roots for the ambipolar field _has bean discussed _for
stellarators by Mynick and lltchal_,“ for tandem mirrors by Mirin et _&.,3'
and. for Elmo Bumpy Torus by Jaeger et 2.37' Of the three. roots shown in
Fig. 8, the ome at C, is unstable. A slight decrease in the positiwve charge
moves C, to the stable equilibrium C, with the direction of the radi;al
electric field pointing toward the minor axis. On the other hand, a slight
increase in the positive charge moves C, to the stable equilibrium C; with the
radial e].ectl;i.c fi.e-ld- pointing away from the minor axis. Although the
electron and ion particle fluumss are very gull at the stable equilibrium C,,
as indicated in Fig. 8, the energy fluxes are not necessarily small. This is
because the energy of the particles that gives the dominant contribution to
energy diffusion is higher than the energy of the particles that gives the
dominant contribution to particle diffusion. 1In the following calculations,
the electric field that gives. the stable equilibrium C; is taken. For low
density operation, this electric field is likely to be the equilibrium field
that the plasma will adjust to naturally, and for high density operation, this
electric field is the only equilibrium field that can satisfy the ambipolar
condition.

It is important to note that the ion flux is very sensitive to radial
electric field variations near C = 0. The reason is that a small increase in

the magnitude of the electric field causes the ions to execute full poloidal

rotations, This drastically reduces the ion particle flux. In contrast,
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electrons are relatively insensitive to a change in radial electric field
because i:he electron effgctive collision frequency :_I.§ less than the E,xﬁ
poloidal rotation frequency. Therefore, 1f a rough estimate of the magnitude
of the ambipolar field is given (e.g., B, = 0), the electron 'éarttcle
diffusion 1is well appro:d.maéed and should provide a good esttl;lau.' for the
total particle confinement time. -

Once the behavior of particle fluxes as a function of the radial electric
field is determined, the problem 1is reduced to the determination of the
magnitude of this radial electric field. In principle, Fig. 8 can be used to
obtain the magnitude t;f the self-consistent radial electric field. This
method requires, however, a different set of curves for each set of machine
parageters. To ohviate this, we propose an npproxi.mate. pmethod which can be
used for all machine parameters. The approximation is the same approximation
that is used to oﬁuin BEg. (1), i.e., below €qs the nonrotational limit for
ion transport is employed and above _e-r. the rotational limit is employed.
Thus, matching the two limits gives .

0.44 x _o/7y2/3 “n": [¢t/e/T) - c/e /]

a_ = (———) . 87)
E 1673 2eh(r) : “Tﬂ,,S/z

Since nz = (c/rB)(39/9r) = = C(cT/reBn)(3n/3r) + BEd. (87) can be rewritten

[Mlq-i) - G(v’q"r')] . 881

c|] =M :
(e,r/'r)a/z

and the machine dependent parameter is

2. 2
a’B.n’ (=%
M= 0.27 x 10 2 mds __ ., (89)

S/2
EplEing T )




Here, ngqy4 is the central plasma density in 104 em™3,
The second equation that related C to €,/T is obtained from the ambipolar

condition [, = T;. This equation is derived in Ref. IT and has the form

-u(e,r/-r)/z + E(s,r/'r) - 0.93

c= D(c/T) + 0.21 . Qo)
where - ceem DT T : : . .-
ZE 0 [o(re—m 3 G(/—e—ﬁ;_)] | :
— 0 o D [ ax [o(/Te7mR)
[’("_T/_J - G("e_.,/—'ﬂ] !
' 74 . B
-c("'?r)—x]] x .exp(-(e,r/'r)x]
and
5
e, /m = (_) l ['(/ xp(-(e/T)x)
€ /Tx) - 6(/ (e /xT) ] - -
. ‘ 5 (D) [ ax (s(/TE7R)
[e(ve /) - c(/e/m)] | !
1/2 11/4

- e(/Te/mx]] «x exp(-(e,/T)x)

with x = (e/'r)/(t: /T). Note that BEg. (90) involves only C and €,/T. With two
eguations for two unknowns, C and €q can be determined from Eqs. (88) and (20)

if t:he machine parameters are given.
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Equating the right-hand sides of Bys. (88) and (qQ0) gives

(-ote/m/2 + E(eyT) - 0. 93) (ef/'r?/z
(¢(7e/m - 6(7_1:/—'1'))(0(&:1_/'!) + 0.21)|

M= . Ce _.(Q1)

The .patanetzr M l.s pPlotted versus €,/T in Fig. 8(a) using Bj. '_(1.1). " The
parameter C is plotted wversus er/'r-i.n Fig. 7(b) using EBg. iqm. !'or any qi.wn
set of machine parameters, M can be determined from Bj. (89). Once .H is
known, €,/T can be found from Fig. 8(a) and then C from Fig. 8(b). Knowing
the normalized strength of the ambipolar field C, the neoclassical particle
and energy fluxes can then be determined. Figure 8(a) shows that when the
value of M i;s sufficiently small (e.g., if density is low), the ambipolar

condition can be satisfied at three values of C as mentioned in the beginning

of this section.

The corresponding Eq. (88) for electrons can be obtained simply by
multiplying the right-hand side of Eq. (88) by a factor of approximately 120.

Then, it can be shown that (cTIT) > 20 for the reactor and the

electron

reference stellarator and (cTIT)electron >8 for ATF and the small

heliac. Thus, electron rotation has no important effect on transport.

The neoclassical fluxes are most eas_ily specified by stating the
canfinement time t, i.e., the time during which the particle and energy must
be replaced to maintain a. steady state. For a reactor, however, the
evaluation of t is complicated by the fact that the reactor will most likely
operate near marginal stability set by so;ne liniting modes (e.g., the
ballooning instabilities). The ;:rofile of the critical pressure graéient for
ballooning instabilities is obtained from MHD stability analysis. In some

regions of the plasma, the plasma pressure gradient will be subcritical and
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the entire flux will be carried by neoclassical transport. In other regions,
the plasma will be wmarginally unstable, i.e., the plasma pressure gradient
exceeds the critical gradient by a small amount, and the flux will be carried
partially by turbulent conwvection and partially by neoclasﬁical transport (see
Ref. 15 for a discussion on convective equilibrium and transport). Therefore,

if the particle confinement time at any minor radius is approximated by

I'dr 21::_1‘(2)

p = z'tre(z) L 4 (12)

where I, is the neoclassical particle flux, then oS will be greater than or
equal to the confinement time (because I'y is less than or equal to the actual
flux). Thus, a reasonable estimate of the cmfi.nement‘ time could be obtained
by minimizing BEq. (92) with respect to minor radius. If n(r) and T(r) are
parabolic, as assumed before (a good approximation if the plasma is matginalj.y
unstable over a good part of the t'.an.i:'ms),13 then Eg. (42) has its minimum
value near r = a/2. The same arqument can be used to estimate the cneréy
confinement time Tee Hence, in quoting stellarator confinement times, the
profiles are assumed to be parabolic and t is evaluated at r = a/2. (For
smaller experimental stellarators, this prescription should still give amn
adequate estimate of the effective confinement time.) Inserting the
exp;ession for T, ([given by Eqg. (54a)] into Eg. (92) and subsequently
simplifying the equati.on. by using the parabolic profile assumption, Bj. (92)

becones

2 .2 _2
B, R a
-4 014 4 m m Q3)

(4.4 + €)(2¢, (a/2))3/2 7 ’

T 0.1¢ x 10
P =

where T4, is the central plasma temperature in 10 keV.



The energy confinement time is

T
_ [ dar 2mr(3/2)n(z)T(r)

T 2%rQ(r) (34)

where Q(r) is the neoclassical energy flux. Inserting Bjy. (53b) into By. (94)

gives the. electron energy confinement tinme,

2 .2 2
n B R a
P& - 0.5 x 10-3‘ 014 4 m m |

€ 2 7/2
(5.4 + c)(zeh(a/zﬁ” T oi I

. _ (45)

Using Egqs. (94), (95), and the equation for ion energy flux (Egq. (Tib)], it

can be shown that the ion energy confinement time is
T =RT,, _ (96)

where the ratio of the ion to electron energy confinement times is

5.4 + C (37)
[t - 0.5)E(e /) + Fleym]

a(er/'r) =

with
6 .
fe /) = (T—T)-’ } dx x exp(~( T/TJX) )
0 (s Te TR - (/e
€ 7=
e () | e (W) - T

(e/e /M) - 6(/e/T))

x x 5/4exp(-(e,r/'r)x) .

The function R is plotted versus €,/T in Fig.l0. WNote that, although the four

sets of machine parameters listed in Table I are different, Ecs. (Q3)-(46) are
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still applicable since the expansion parameters used in obtaining the
neoclassical fluxes are valid for all these machines, as mentioned_ in
Secs. IVB and IVC.

Using Egs. (93)-(96), the confinement times estimated for the four
machines are given in Table II. The results show that in all the machines,
the electron energy confinement time is comparable to the ion energy
confinement time, but is only one third of the particle confinement time.
Note that /T 1is less than unity for all cases. For the reactor,

1 3

n?‘ = 1.3 x 10 cm™-sec [where ;c

the Lawson criterion for ignition. Equation (96) shows that the parameters n?c

= (f: + t.i: )/2] which roughly satisfies

can be Iincreased by Increasing the major radious, the minor radius, the
magnetic field, the plasma denstiy, or by decreasing the plasma temperature.
Finally, Egqs. (95) and (96) show that for a fixed minor radius, n?t is
proportional to the aspect ratio squared or the volume squared. For fixed
aspect ratilo, nt c is proportional to the aspect ratio squared or the
volume squared. For fixed aspect ratlo, nt_ is proportional to
(volmue)“}. Thus, if cost scales with volume, it is cheaper to increase

the aspect ratio than the overall dimensions.

VI. CONCLUSION

Stellarator neoclassical transport in the low-collisional regime is
calculated by usilng the drift-Boltzmann equation. By expanding the drift-
Boltzmann equation and then applying the solubility conditions, a set of
reduced equations for trapped and untrapped particles is obtained in
Sec. IVA. The -electron distribution function satisfying the reduced
equations is obtalned in Sec. IV B by a second expansion. The electron fluxes
are then calculated. It is found that the electron fluxes in most cases are
relatively Insensitive to variations in ambipolar electric field. Electrons
" with five to six times the thermal energy give the dominant contribution to
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electron diffusion. The lon fluxes are calculated in Sec. IV C. The radial
electric- field is very efficient in reducing the ion fluxes. Thus, electron
and lon particle fluxes are governed by electron diffusion. For a reactor
plasma, the effect of collisionless detrapping/entrapping is important only at
energies beyond the energy range (three to four times the thermal energy) that

gives the dominant contribution to ion diffusion.
We have compared our results for electron diffusion to those of other

authors'. Our results agree with those of Connor and Hast:le8 and with those
of Kavrizhnykh in the nonrotational 1limit. However, those of Galeev and
Sagdeev10 are a factor of two smaller. This discrepancy can be traced to a
factor of two error in their Eq. 2.40. The lon diffusion coefficient abtalined
in this paper is smaller than that given in Ref. 10 by a factor of five after
the numercial integration for the energy weighting of the Maxwellian
distribution function is carried out correctly. Diffusion due to temperature
gradient is larger than that due to density and electric potential gradients
for both electron and lon diffusion. The nonradial ambipolar electric field
induced by ion drift enhances the particle transport by about 20% and energy

transport by about 15%.

A convenient graphical method for determining the self-consistent
radial ambipolar field and energy cofinement times for machines with different
parameters but with parabolic density and temperature profiles is presented in
Figs. 9 and 10. From the machine parameter M [Eq. (89)] one obtains cT/T
from Fig. 9(a) and then one obtalns the ambipolar field parameter C from
Fig. 9(b). Then the electron confinement time 15 is given by
Eq. (95) (which involves C) while Eq. (96) yields the ion confinement time
1: where R 1s obtained from Fig. 10. Note that only _for very small
values of cT/T is 11>>1:. Numerical calculations show that electron energy

€
confinement time is always comparable toc that of the ions regardless of
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machine parameters. Although the neoclassical losses are large, it 1s shown
that ignition can probably be achieved in a reasonable size reactor.
Confinement scaling law shows that in order to increase nr, it 1s cheaper to
increase the aspect ratio than the overall dimensions of the reactor.
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Appendix A. BOUNCE AVERAGZ OF THE PITCH-~ANGLE SCATTERING OPERATOR

The bounce-average operator in Eq. (3%) is

(v/8)$(dL/v, }(3/3E) (1-£2) (3£/3E)
v 2 2, If ]
AR AL T F @i/ y (A1)

Let the value of £ at the center of a magnetic well be Eo° Using the first

adiabatic invariant, it can be shown that at an arbitrary fixed position in a

magnetic well

E_ .
€ 0
where
' - 1/2
g, = (2¢,)" %,

2
with 0 € x <4. Using BEg. (A2) and the fact that E5 << 1 for trapped
particles, Eq. (A1) can be written as

v 2 3f ~ (v/4)(3/a€°)(50)'2 [$42 (€ /E) ($ALE/$AL/E) (IL/IE ) ]

Y3 $dL(E /E) °
(A3)-

The integrals in the numerator and in the denominator are evaluated by kesping

on_y the helical variations in the magnetic field strength [i.e., B =

B°[(1 - eh)cos(lﬂ - mz)]. The results are:

.. 1/2
fdr g =9 dife (cos hi ~ cos hL _ )]
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-ﬁ-f-!‘-n—— (V8 E(x) + /8 (Kz - 1) K(x)] '
dL daL
ﬁ.e—-ﬁle(osh!.- ht )]1/2
nlc cos ht

R ITra)

Ehlll

where h = 280 ~ m; and K(x) (E(x)] is the complete elliptical integral of the

first [second] kind. The bounce-averaged pitcheangle scattering operator

becones
v 9 2, of vi1ad 9f
<.z-3—€-(1-s).3_€_>-z.-f-a—E;JD.€—o v (24)
where

= 1.2y=1 rE(x)} -
D= (x°) [—x(‘) + (x° - 1] v
£o 8xK(x)R
g = ﬁ 4l — = ———tl -

E m
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Appendix B HEURISTIC DERIVATION OF THE ION DIFFUSION COEFFICIENT WITH THE

EFFECT OF COLLISIONLESS DETRAPPING AND ENTRAPPING

In stellarators with the depth of the helical wells dependent on the
minor radius, lons can collisionlessly detrap or entrap from the helical well
as shown in Fig.1l. This can be understood as follows. Superposition of the
grad-8 drift upon the poloidal Er x B drift results in an outward shift of the
center of the trapped-ion drift orbit. consequently', the dept:h"ot the helical
well changes with the poloidal location of a trapped ion. Hence, barely
trapped ions can experience collisionless det.rappi.ng and entrapping.

If the helical well depth € (r) = Sa(t/a)" with §, a constant,3 then
helically trapped ions with pitch angle £ = v’zTa (rc/a)"'/ 2 can detrap at radius

r The change in helical well depth &g (r) and the corresponding

c.
collisionless change in the trapping condition GECL as r changes by an amount

8 is
G:h(r) 26£cn
h(t) [3 -
= lir- - - (B1)
3

Since the shift of the center of the trapped ion drift orbit from the center
of the magnetic surface is vg/Qg, the fraction of ions, F, that can experience
collisionless detrapping and entrapping is 2[(1/2)/56_;(v5/aﬁs)1.

Collisions also .b:ing ions in and out of helical wells. In one poloidal

rotation period, collisions change the pitch angle of the fions by an amount

v
 oftiy1/2 | ,
o1l —O(QB) * (B2)
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Therefore, in order for the effect of collisionless detrapping and entrapping
to play a significant role in lon transport, the collisionless change in the
trapped condition GECL due to the radial variation of the depth of the helical

well should be greater than §E_,;1s L.@..

8% 011 ECL

-3 aQ [25, (t)"r/z . (83)
If 6a = 0.3, then for the reference stellarator, the condition for Eg. (B3) to
hold isg that ion energy e > 37, and for the stellarator reactor, the condition
is that € > 4T. The parameters for the reference stellarator and the
stellarator reactor are given in Table I.

To estimate the di_ffus'ion coefficient, we need to evaluate the step size
6r. Using Bqs. (81) and (B2), it can be shown that

br _ 2 'iyi/2
A

and hence,
2 v,
br = == (57) - (B4)
2/285

The characteristic €requency T for a trapoed ion to detrap is 2(92"

Therefore, the diffusion coefficient is

D = 0(5r2VF)
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v

[ v (55)
’
for L = 2.

Ht;te that the ion does not entrap in the lower region of the torus after
collisionless detrapping from point A (see Fig. 12), because the rate of
change in particle pitch angle due to collisions is slower than the rate of
increase of the helical well strength as the particle drifts from an inner
minor radius to an outer minor radius. Also note that even if the helical
wells have poloidal symmetry, the probability for an ion to entrap at the
poloidal location with poloidal angle O, after detrapping at -8, is small due
to pitch-angle scattering.

Kinetic calculations for the problem discussed in this appendix have been
carried out be Hynick.s"' However, in Mynick's calculation, it is assumed that
particles always entrap.at © after-detrapping at =Q. A correct treatment of
this problem with pitch-angle scattering would be a good subject for
investigation.

Even if € is constant across the minor radius, it might atill be thought
that the magnetic field variation on the trapped ion drift orbit caused by the
variation in the toroidal field strength would collisionlessly detrap and
entrap ions. This is not generally the case because, if the ‘helical well
length is assumed to be independent of its poloidal location, then the effect
is compensated by E,. This can be seen from the following argument. As a

trapped ion changes its radius by A, it changes its kine tic energy by an

amount

mév
2

- eAEt ’
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r
R’

o

in order to conserve total energy. But by the conservation of the first

adiabatic invariant,

av>
l &8

2 B’

Ivz
8(5=) =

“z
--stE
0

Thus, v% is unchanged at corresponding points in the helical well., (This also
follows from the conservation law for the second adiabatic invariant.) Now,
for €, independent of'_ r [as in helical-axis stellarators (Heliac)], the
helical trapped-region in velocity space expands by an amount r/Ry a8 one
moves from the inner (smaller R) to the outer (larger R) region of the
torus. At the same time, the ion perpendicular velocity is reduced by the
same factor of l.'/l?.0 as indicated above. As a result, the fraction of trapped

ions remains constant and the toroidal magnetic €£ield wvariation causes no

detrapping or entrapping.
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TABLE I. STELLARATOR PARAMETERS

Physical Reference Sma11®
quantity Reactor stellarator ATF? Heliac
Peak plasma T x 1014 2 x 1074 1014 1014
density (cm™3)
Peak plasma 10 . 10 1 1
temperature (kevV)
Toroidal magnetic 60 50 18 10
field (kG)
Peak B 15.6 6.4 2.5 8
R{m) 10 10 2.1 1.2
a(m) 1.0 1.0 0.3 0.25
ch(raa/Z) 0.1 0.1 0.2 0.1
Deutercn thermal 1.1 x 109 1.1 x 108 3.4 x 107 3.4 x 107
velocity (cmesec™1) )

e -3 -3 -3 -3
Deuteron 90 2.3 x 10 7.0 x 10 0.44 x 10 0.44 x 10
deflection time
(sac)

& Reference 13.
Reference 23.
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TABLE II. Confinement Properties in Stellarators®

Confinement Reference Small
Parameters Reactor Stellarator ATF Heliac
Particle confinement 0.718 0.8 0.133 0.010

time tp(sec)

Electron energy 0.2} 0.08 0.03% 0.003

confinement time

e

Te(sec)

Ion energy 0.17 0.07 0.040 0.003

confinement time

i

1o (sec)
R 0.83_ 13 ° 1.2 1.25
M 1.31 0.30 0.69 0.60
o 1.4 0.5 i 0.9 0.8
c.r/'l‘ 0.53 0.38 0.47 0.44

2 In this table, all results are obtained with parabolic density and
" temperature profiles at r = a/2.
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FIGURE CAPTIONS

Toroidal coordinate system (r, 6, ().

The variation in B, the magnitude of the magnetic field, along a
field line.

Trapped and untrapped regions in velocity space, in terms of the
parallel (v“) and perpendicular (v ) velocity. The trapped
region 1s shaded. The pitch angle © of the gyro-orbit 1is defined
by cosé = v“Iv.

Projection of a typical collisionless lon orbit on a poloidal cross
section. Point 0 is the center of the magnetic surface and
A= vB/QE.

The relative electron fluxes per unit energy as a function of
normalized energy x = ¢/T.

(a). The relative electron particle flux per unit energy,
[xae'xl(i(fi) - GWX) + 1)J(x + 1/2), as a function of x.

(b). The relative electron energy flux per unit energy,
[x°e~/(#(/X) - G(vX) + 1)](x + 1/2), as a function of x.

A and B as a function of pitch-angle parameter « for ilon energy at

c = 4T.

The relative ion fluxes per unit energy as a function of normalized
energy x = €/T. _

(a). The relative ion particle flux per wunit energy,
x e @) - 6z 2(x - 3/2), as a function of x.

(b). The relative ion particle flux per unit energy,
x 14X @wx) - GvR))Y%(x - 3/2), 8s & function of x.

Plot of the electron and ion particle fluxes I versus the
normalized ambipolar electric field strength C for the reference

stellarator at r/a = 0.5.



Fig. 9

Fig. 10

Fig. 11
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Diagrams for the determination of ambipolar electric field.

(a). Plot of the machine dependent parameter M [given by Eq. (91)]
versus cTIT.

(b). Plot of the normalized ambipolar electric field C ([given by
Eq. (90) versus chT.

Plot of the ratio of the lon energy to electron energy confinement
time, R [given by Eq. (97)], versus cTIT.

Projection of a typical collisionless ion orbit on a poloidal cross
section with the effect of collisionless detrapping and entrapping}
Point A 1is the collisionless entrapping point where toroidally
trapped lons enter the helical well. Point B is the collisionless
detrapping point where jons leave the helical well and become

toroidally trapped particles. Point 0 is the center of the magnetic

surface and A = velﬂt.
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